Roles for PI(3,5)P2 in nutrient sensing through TORC1
نویسندگان
چکیده
TORC1, a conserved protein kinase, regulates cell growth in response to nutrients. Localization of mammalian TORC1 to lysosomes is essential for TORC1 activation. Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P(2)), an endosomal signaling lipid, is implicated in insulin-dependent stimulation of TORC1 activity in adipocytes. This raises the question of whether PI(3,5)P(2) is an essential general regulator of TORC1. Moreover, the subcellular location where PI(3,5)P(2) regulates TORC1 was not known. Here we report that PI(3,5)P(2) is required for TORC1 activity in yeast and regulates TORC1 on the vacuole (lysosome). Furthermore, we show that the TORC1 substrate, Sch9 (a homologue of mammalian S6K), is recruited to the vacuole by direct interaction with PI(3,5)P(2), where it is phosphorylated by TORC1. Of importance, we find that PI(3,5)P(2) is required for multiple downstream pathways via TORC1-dependent phosphorylation of additional targets, including Atg13, the modification of which inhibits autophagy, and phosphorylation of Npr1, which releases its inhibitory function and allows nutrient-dependent endocytosis. These findings reveal PI(3,5)P(2) as a general regulator of TORC1 and suggest that PI(3,5)P(2) provides a platform for TORC1 signaling from lysosomes.
منابع مشابه
The roles and regulation of phosphatidylinositol 3,5-bisphosphates in mammals
Phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] is a low-abundance signaling lipid important for the maintenance of the endomembrane system and selected membrane trafficking pathways. In yeast, in response to hyperosmotic stress, PI(3,5)P2 levels rise more than 20-fold in 5 minutes, and return to near basal levels in 30 minutes. This transient change suggests that PI(3,5)P2 levels are tightly...
متن کاملThe stress-activated phosphatidylinositol 3-phosphate 5-kinase Fab1p is essential for vacuole function in S. cerevisiae
Polyphosphoinositides have many roles in cell signalling and vesicle trafficking [1-3]. Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), a recently discovered PIP2 isomer, is ubiquitous in eukaryotic cells and rapidly accumulates in hyperosmotically stressed yeast. PI(3,5)P2 is synthesised from PI(3)P in both yeast and mammalian cells [4,5]. A search of the Saccharomyces cerevisiae genome dat...
متن کاملPI(3,5)P2 biosynthesis regulates oligodendrocyte differentiation by intrinsic and extrinsic mechanisms
Proper development of the CNS axon-glia unit requires bi-directional communication between axons and oligodendrocytes (OLs). We show that the signaling lipid phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2] is required in neurons and in OLs for normal CNS myelination. In mice, mutations of Fig4, Pikfyve or Vac14, encoding key components of the PI(3,5)P2 biosynthetic complex, each lead to impai...
متن کاملSte12/Fab1 phosphatidylinositol-3-phosphate 5-kinase is required for nitrogen-regulated mitotic commitment and cell size control
Tight coupling of cell growth and cell cycle progression enable cells to adjust their rate of division, and therefore size, to the demands of proliferation in varying nutritional environments. Nutrient stress promotes inhibition of Target Of Rapamycin Complex 1 (TORC1) activity. In fission yeast, reduced TORC1 activity advances mitotic onset and switches growth to a sustained proliferation at r...
متن کاملThe signaling lipid PI(3,5)P2 stabilizes V1–Vo sector interactions and activates the V-ATPase
Vacuolar proton-translocating ATPases (V-ATPases) are highly conserved, ATP-driven proton pumps regulated by reversible dissociation of its cytosolic, peripheral V1 domain from the integral membrane V(o) domain. Multiple stresses induce changes in V1-V(o) assembly, but the signaling mechanisms behind these changes are not understood. Here we show that certain stress-responsive changes in V-ATPa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 25 شماره
صفحات -
تاریخ انتشار 2014